ФИЗИОЛОГИЯ ДВИЖЕНИЙ

Страница 7

Участие мышц в конкретном движении весьма многообразно. Однако в функциональном отношении в конкретном двигательном акте выделяют основную мышцу (основной двигатель), вспомогательные мышцы и стабилизаторы (мышцы, фиксирующие суставы, но напрямую не участвующие в движении). Рассмотрим реализацию рассмотренных общих принципов на примере ходьбы.

Ходьба является обычной формой локомоции человека и относится к циклическим двигательным актам. Выделяют следующие периоды ходьбы (рис. 5.7). Двухопорный период (1), когда обе ноги стоят на опоре: одноопорный период – для правой ноги (2) и переносный (3) – для левой. Снова двухопорный (4) и затем одноопорный (5) для левой ноги. Во время опорной фазы происходит перекатывание стопы с пятки на носок. В опорных стадиях выделяют передний и задний толчки: первый – при переносе нагрузки на опорную ногу, второй – при отталкивании ноги от опоры. В ходьбе участвуют мышцы стопы, голени, бедра и тазового пояса.

Нейрофизиологические механизмы локомоции.

Главным элементом нейрофизиологического механизма являются центральные генераторы движений. У позвоночных животных они находятся в спинном мозге и задают характер сокращения мышц конечности, поясов конечностей или соответствующих сегментов тела. Центральный генератор – это функциональное понятие. У позвоночных животных в состав центрального генератора входят нейроны нескольких сегментов спинного мозга; эффекторными нейронами являются мотонейроны. Под активацией генератора понимают перевод его из состояния покоя в состояние активности. Это осуществляется системой командных нейронов, расположенных на разных уровнях нервной системы. Активирующие сигналы представляют собой тонический поток импульсов, интенсивность которого и определяет уровень активности генератора.

В основе координации движений конечностей и частей тела при локомоции лежит взаимодействие различных центральных генераторов. Это взаимодействие осуществляется специальными координирующими нейронами. Несмотря на то, что центральный генератор может работать автономно, у интактного животного он подвержен мощному влиянию периферических афферентов. Благодаря этому в реальных условиях работа генератора адаптирует локомоцию к меняющимся условиям. Кроме этого, супраспинальные центры также оказывают воздействие на работу центрального генератора. Благодаря такому устройству система управления локомоцией у животных сочетает в себе принцип программного управления с управлением по принципу обратной связи, при этом обратные связи охватывают все иерархические уровни.

Сеть короткоаксонных интернейронов, которые, как предполагают, и составляют локомоторный генератор, локализована в латеральных участках серого вещества спинного мозга. Благодаря активности короткоаксонных нейронов отдельные сегменты спинального генератора могут объединяться и работать как целое. Генератор одной конечности состоит из двух полуцентров (сгибательного и разгибательного), которые взаимодействуют реципрокно. Возможно, автоматизм работы локомоторного центра обеспечивается нейронами с пейсмекерными свойствами (способны к самовозбуждению).

Исследования на животных показали, что между конечностями одного пояса (гомологичными) и обеими конечностями одной стороны тела (гомолатеральными) при разных походках реализуются только две программы взаимодействия: противофазная и синфазная. Переход от одного типа взаимодействия к другому происходит на протяжении 1–2 локомоторных циклов. Различные комбинации программ, по-видимому, лежат в основе различных типов походок. Некоторые экспериментальные наблюдения на животных дают основание полагать, что при локомоции генераторы задних конечностей доминируют, им присуща большая степень автоматизма; в отсутствие локомоции они тонически тормозят центры передних конечностей.

У всех позвоночных животных (от рыб до приматов) обнаружены области мозга, электрическая стимуляция которых вызывает локомоцию. Усиление стимуляции локомоторной области сопровождается более энергичной локомоцией. Установлено, что для успешной локомоции необходима сохранность латеральной и вентролатеральной областей спинного мозга.

Страницы: 2 3 4 5 6 7 8 9 10 11 12

Поиск